Statistical Modeling and Optimization Approaches for Development of Fuel-Efficient Vehicles

\[y(\bar{x}) = \sum_{i=1}^{N} C_i \cdot e^{-\frac{1}{2} \sum_{i=1}^{D} \frac{(x_i - \bar{x})^2}{r_i^2}} \]

Sameera C Damle
Manager – Technical Sales, Support & marketing
E-mail: sameera.damle@etas.com
− About ETAS

− Challenges of today’s ECU Calibration & Engine Development

− Model based Calibration

− Case Study
– About ETAS

– Challenges of today’s ECU Calibration & Engine Development

– Model based Calibration

– Case Study
Leading Provider of Solutions and Services for Embedded Systems

- ETAS with over 850 associates is part of the Bosch Group
- Present in 13 countries with 23 offices
- ETAS subsidiary ESCRYP'T is a specialist for embedded systems security

ETAS Customers and Domains

- Trusted by OEMs, tier one and ECU suppliers, as well as engineering service providers:
 - Commercial Vehicles
 - Automotive
 - Heavy Duty Engines
 - Railway
 - Powertrain
 - Construction Machines
 - Consumer Electronics
 - Off-Highway

ESCRYP'T Customers and Domains

- The ESCRYP'T customer base includes:
 - Automotive
 - Mobile Machines & Transportation
 - Energy
 - Consumer Electronics
 - Mobile Devices
 - Industrial Automation
 - Financial & Government Logistics
 - Health Care
Corporate Profile

Our Solutions Portfolio

<table>
<thead>
<tr>
<th>Software Engineering</th>
<th>Test and Validation</th>
<th>Measurement, Calibration, Diagnostics</th>
<th>Embedded Security</th>
<th>Real Time Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETAS Products</td>
<td>Consulting and Engineering Services</td>
<td>Virtualization Technology</td>
<td>escrypt</td>
<td></td>
</tr>
</tbody>
</table>
– About ETAS

– Challenges of today’s ECU Calibration & Engine Development

– Model based Calibration

– Case Study
Challenges of today’s ECU Calibration & Engine Development

Stringent Regulations

- From 2012:
 - CO₂: 130 g CO₂/km

- Target starting from 2020:
 - CO₂: 95 g CO₂/km

- Nitrogen oxide and particle emissions:
 - EURO 3 (1999)
 - EURO 4 (2005)
 - EURO 5 (2009)
 - EURO 6 (2014)

- CO₂ emissions NEDC graph:
 - EU-fleet limit value
Classical calibration procedure: Full factorial variation of all combinations

⇒ Exponential increase with variable valve timing (VVT)

Without VVT: ~ 250 MP

~10h

Engine with 1 variable Camshaft: ~2,500 MP

~ 100h

Engine with 2 variable Camshafts: ~25,000 MP

~1000h
Challenges of today’s ECU Calibration & Engine Development

Conflicting targets

Operating Range:
• Speed
• Load

Engine Parameter:
• Injection Timing
• Ignition Timing
• Fuel Pressure
• Exhaust Gas Recirculation
• Exhaust Camshaft
• Intake Camshaft
• Swirl Valve

Complex Interactions

Example: Modern Gasoline Engine

Replacing the engine by a mathematical model:
\[y(\bar{x}) = \sum_{i=1}^{N} C_i \cdot e^{-\frac{1}{2} \sum_{i=1}^{D} \frac{(x_{il} - y_i)^2}{\sigma_i^2}} \]

Conflicting Targets

Targets:
• Consumption/CO₂
• Emissions:
 • Soot / Particle
 • NOₓ
 • HC
 • Stability (CoV)
 • Noise
 • Exhaust-Temperature
 • ...

Classical Procedure:
\[\Rightarrow \] Full variation of all input parameters result in exponential increase of measurement effort!

Virtual Calibration with ASCMO:
\[\Rightarrow \] Creation of an engine model based on few specific measurements
\[\Rightarrow \] Optimization of the calibration parameter based on the model (manual or with optimizers)
Agenda

– About ETAS
– Challenges of today’s ECU Calibration & Engine Development
– Model based Calibration
– Case Study
Model based Calibration
From Lab to Math

Measuring at the Real Engine

Calculation of an Engine Model

Calibrate at the Virtual Engine

- ECU Parameter
- Emission
Model based Calibration
Main elements and requirements

Test planning
- Robust
- Scalable
- Easy to use

Modeling
- Highest possible accuracy
- Automated model calculation
- No specific mathematical expertise necessary

Map optimization
- Global: for whole driving cycles
- Considering map-smoothness and gradients
Model based Calibration

Principle and advantages of Statistical machine learning methods

Polynomials or Neuronal Nets

Principle:
- Search in a given class of functions (polynomial, neuronal net, ...)
- Fit the model parameter by experts and validation measurements

Disadvantages:
- Limited flexibility & danger of over-fitting
- High expertise and assumptions necessary

Statistical machine learning methods

Principle:

\[
y(\vec{x}) = \sum_{i=1}^{N} C_i \cdot e^{-\frac{1}{2} \sum_{i=1}^{D} (x_i - z_i)^2}
\]

- Automatic determination of the most likely function

Advantages
- High flexibility without assumptions or expertise
- Gives local confidence interval (model variance)
- Robust against outliers

Modeling a complex 1-D signal with classical DoE-Models („Advanced Polynomials“)

Training Data

Model Prediction

Model Variance

Validity not supported

Modeling a complex 1-D signal with new statistical machine learning methods

Training Data & Model Prediction

Model Variance & Validity

Model based Calibration

Data from Gasoline Engine

Benchmark:
Comparison of two different neuronal nets from commercial tools against ASCMO

Example:
Torque-modelling for a gasoline engine with variable in- & outlet-cam in the whole operating range (speed/load)

6 Parameter:
speed, load, 2 cams, AFR and ignition

Shown:
Evolution of model-error depending on number of training data:
Neural Net: black + red
ASCMO-approach: blue

⇒ **Neural Net:** insufficient accuracy even with > 1000 training data points
⇒ **ASCMO:** sufficient accuracy reached with 300 training data points
Agenda

– About ETAS

– Challenges of today’s ECU Calibration & Engine Development

– Model based Calibration

– Case Study
Case Study

Challenges I/II

Parameters:
- Engine speed
- Injection quantity
- Start of injection
- Charge pressure
- Air mass
- Rail pressure
- Swirl flap
- Variable valve drive
- Low pressure EGR
- Exhaust gas damper

Quantity and position:
- Pre-injections
- Post-injections

Target variables:
- Fuel consumption
- Exhaust gas emissions
- Response behaviour
- Noise emissions
- Power characteristics

Boundary conditions:
- Component protection
- Legal specifications

Optimization of multiple criteria trade-off

- Emissions
- Acoustics
- Fuel consumption

Source: Volkswagen
Broad operating region:
Vehicle types: Compact car to SUV
Variants: Eco / Comfort / Sport
Transmission: Manual/Automatic

Vehicle types: Compact car to SUV
Variants: Eco / Comfort / Sport
Transmission: Manual/Automatic

Emissions/fuel consumption
NO\textsubscript{x} = 0.12 g/km
HC = 0.03 g/km
Part = 0.001 g/km
CO\textsubscript{2} = 99 g/km

Source: Volkswagen
Results:

- By using the global engine model with ASCMO the fuel consumption could be reduced by 2 – 4%.
- Reduce particulate emission of a diesel engine by adding a post injection to an existing calibration concept without increasing of fuel consumption.
- Classical approach would require at least 8 weeks for the necessary 10 parameter but with the use of ASCMO global model with 400 data points could be optimised in 1.5 days.
- With ETAS ASCMO, application engineers are able to use DoE independently.
- Since the launch of ETAS ASCMO, the number of DoE users has been increasing rapidly.

Source: Volkswagen
Statistical Modeling and Optimization Approaches for Development of Fuel-Efficient Vehicles

Thank you
Muchas gracias
谢谢
Tack så mycket
Děkuji
धन्यवाद
Mille Grazie
Merci
Hvala
sağ olun
감사합니다.
有難うございました
Спасибо!
Kiitos
Дъякую
Vielen Dank