ASEAN...the emerging Automotive Hub of the World
24th - 25th June 2015
Bitec Bangna, Bangkok
Toyota’s Development of Environmental Technologies for Sustainable Mobility

24 June. 2015
Yasuki Nakagawa
Toyota Motor Asia Pacific Engineering & Manufacturing Co., LTD. (TMAP-EM)
1. Toyota’s environmental technology development concept

2. Energy-saving initiatives (conservation)
 Conventional vehicles (gasoline, diesel), hybrid vehicles

3. Fuel diversification initiatives
 Plug-in hybrid vehicles, electric vehicles, fuel cell vehicles
1. Toyota’s environmental technology development concept

2. Energy-saving initiatives (conservation)
 Conventional vehicles (gasoline, diesel), hybrid vehicles

3. Fuel diversification initiatives
 Plug-in hybrid vehicles, electric vehicles, fuel cell vehicles
Current challenges facing the automotive industry

1. Globalization of industry and technology since the 20th century
 - Massive use of fossil fuels
 - Increase in number of vehicles
 - Increasing CO₂ emissions (global warming)
 - Uncertainty over future petroleum supplies
 - Increasing air pollution

Rewarded with a smile
Toyota’s fundamental approach

- Energy conservation
- Fuel diversification

Green vehicles can only contribute significantly to the environmental issues when they are widely used.
1. Toyota’s environmental technology development concept

2. Energy-saving initiatives (conservation)
 Conventional vehicles (gasoline, diesel), hybrid vehicles

3. Fuel diversification initiatives
 Plug-in hybrid vehicles, electric vehicles, fuel cell vehicles
To improve fuel efficiency

What is the most efficient way to turn each drop of fuel into energy and move the vehicle with that energy?

Improving powertrain efficiency
- Improving engine thermal efficiency
- Improving drivetrain efficiency

Reducing running resistance
- Reducing air resistance
- Reducing weight

Effective ways to increase fuel efficiency: Improving engine thermal efficiency & Enhancing drivetrain power transfer efficiency

Rewarded with a smile
Engines and transmissions are revamped through ongoing incorporation of new technologies.
Types of hybrid systems

Series hybrid

The engine operates the generator, and electric motor drives the wheels with the generated power.

![Series hybrid diagram](image)

Parallel hybrid

The engine and electric motor drive the wheels. When the electric motor is generating power, it can’t be used for driving the wheels.

![Parallel hybrid diagram](image)

Series parallel hybrid

Depending on driving conditions, the engine and the electric motor can work together, or the motor alone can propel the vehicle.

![Series parallel hybrid diagram](image)

Toyota’s hybrids: series parallel hybrids

Rewarded with a smile
Toyota Hybrid System: Reasons for higher fuel efficiency

Conventional engine:
- Improved thermal efficiency by Atkinson cycle
- Engine operates in higher thermally efficient area
- Engine stops where thermal efficiency is low. Vehicle is only propelled by electric motor
- Thermal efficiency distribution

Toyota hybrid system:
- Engine operates in higher thermally efficient area
- Engine stops where thermal efficiency is low. Vehicle is only propelled by electric motor
- Improved thermal efficiency by Atkinson cycle
- Thermal efficiency distribution
Hybrid technology underpins Toyota’s PHVs, EVs, and FCVs.
1. Toyota’s environmental technology development concept

2. Energy-saving initiatives (conservation)
 Conventional vehicles (gasoline, diesel), hybrid vehicles

3. Fuel diversification initiatives
 Plug-in hybrid vehicles, electric vehicles, fuel cell vehicles
Diversification of automotive fuels and powertrains

Primary energy sources:
- Oil
- Natural gas
- Plants
- Coal
- Uranium
- Hydro, solar, geothermal electricity generation

Automotive fuels:
- Gasoline
- Diesel
- Gaseous fuels
- Biofuels
- Synthetic fuels
- Electricity
- Hydrogen

Powertrains:
- Conventional vehicles and hybrid vehicles
- CNG, FFV
- PHV
- EV
- FCV

Oil conservation

Fuel diversification
Characteristics of alternative fuels

<table>
<thead>
<tr>
<th></th>
<th>Electricity</th>
<th>Hydrogen</th>
<th>Biofuels</th>
<th>Natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Well-to-wheel CO₂</td>
<td>Poor to excellent</td>
<td>Poor to excellent</td>
<td>Poor to excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Supply volume</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Poor</td>
<td>Good</td>
</tr>
<tr>
<td>Cruising range</td>
<td>Poor</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Good</td>
</tr>
<tr>
<td>Fueling/charging time</td>
<td>Poor</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Dedicated infrastructure</td>
<td>Good</td>
<td>Poor</td>
<td>Excellent</td>
<td>Good</td>
</tr>
</tbody>
</table>

Strengths of individual alternative fuels
Fuel diversity and uses

- **EVs**: Short-distance, HVs & PHVs: Wide-use, FCVs: Medium-to-long distance

<table>
<thead>
<tr>
<th>Vehicle size</th>
<th>Travel distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVs</td>
<td></td>
</tr>
<tr>
<td>Home delivery</td>
<td>Route buses (Public Transportation)</td>
</tr>
<tr>
<td>Personal mobility</td>
<td></td>
</tr>
<tr>
<td>Vehicle size</td>
<td>Fuel</td>
</tr>
<tr>
<td>EVs</td>
<td>Electricity</td>
</tr>
<tr>
<td>Short-distance</td>
<td>Gasoline, diesel, biofuels, CNG,</td>
</tr>
<tr>
<td>HVs</td>
<td>synthetic fuels, etc.</td>
</tr>
<tr>
<td>PHVs</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>FCVs</td>
<td></td>
</tr>
<tr>
<td>None route buses</td>
<td></td>
</tr>
<tr>
<td>Full-size trucks</td>
<td></td>
</tr>
<tr>
<td>Home delivery</td>
<td></td>
</tr>
<tr>
<td>trucks</td>
<td></td>
</tr>
</tbody>
</table>

EVs: Short-distance, HVs & PHVs: Wide-use, FCVs: Medium-to-long distance
CNG, Bio fuel (E85/FFV)

For Thailand

<table>
<thead>
<tr>
<th>Bio Fuel</th>
<th>2008</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>E85-FFV</td>
<td>Camry</td>
<td>Camry 2012</td>
</tr>
<tr>
<td></td>
<td>Yaris</td>
<td>Avanza</td>
</tr>
<tr>
<td>Bio Diesel</td>
<td>Vios</td>
<td>Corolla FFV</td>
</tr>
<tr>
<td></td>
<td>Vigo</td>
<td>Corolla CNG</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>Fortuner</td>
<td>Vigo CNG</td>
</tr>
</tbody>
</table>

Rewarded with a smile

TOYOTA
Pros and cons of EVs

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero emissions when driven</td>
<td>Shorter range</td>
</tr>
<tr>
<td>Quiet</td>
<td>High battery costs</td>
</tr>
<tr>
<td>Rechargeable from household outlet</td>
<td>Long charging time</td>
</tr>
<tr>
<td></td>
<td>Need for rapid charger infrastructure</td>
</tr>
</tbody>
</table>

EVs are appropriate for short-distance commuting and fleet use.
Innovative car sharing system by Evs (Ha:mo project)

Drive little when you want to: "Ha:mo RIDE"

Easy to transfer from/to other public transportation

Ultra-compact EV enables easy drive through narrow streets in more ecology way

Can drop-off nearby the goal

Next-generation urban transport system which combines ultra-compact electric vehicle with public transportation

Home

Length: 2.4m Width: 1.1m Occupants: 1 person Recharging time: 6hrs Cruising range: 50km Maximum speed: 60km/h

Rewarded with a smile
PHVs are the result of the integration and innovation of HV and EV technologies.

- Use as EV for short distances, HV for long distances
- No concern about battery running out
- Can be recharged easily with household electricity

PHV characteristics

- **Mid and long distance**
 - Holiday

- **Short distance**
 - Daily

Charge at home

RV-mode driving
- Leisure, long-distance, holiday

EV-mode driving
- Commuting and daily use

PHVs are the result of the integration and innovation of HV and EV technologies.
<Results of verified demonstration program for Prius PHV on the road in Tianjin, China>

Test Terms: Apr 2011 ~ Jan. 2012 (10 months)
Test car: Prius PHV (14 vehicles)
Prius HV (1 vehicle)
Corolla (1 vehicle)
Driver: Volunteers (27 people)

Total fuel consumption
Prius PHV: 3.41L/100km (average)
△ 64% reduction
Prius HV: 5.72L/100km
Corolla: 9.38L/100km

Distribution of mileage per day

Energy consumption of PHV
(14 vehicles × 1 month)

Rewarded with a smile
The importance of PHVs

PHVs can be used safely and without limitations, at all times

Next-generation electric vehicles for widespread use
FCV system’s cost increase over long cruising ranges is rather small. It has advantages in mid-to-long ranges.
Advantages of FCVs

Energy diversification
- Hydrogen can be produced using a variety of energy sources

Zero emissions
- Zero CO$_2$ emissions during driving

Driving pleasure
- Smooth and quiet operation
- Smooth start and good acceleration at low and medium speeds

Performance
- High cruising range
- Low refueling time

Large power supply capability for emergencies
- Power supply capabilities
Toyota’s fuel cell sedan, the Mirai, was launched in Japan in 2014.

The Mirai fuel cell vehicle runs on electricity generated by a chemical reaction between hydrogen and oxygen.

- More energy efficient than internal combustion engines
- No CO₂ emissions when driving
- Cruising range of 650 km (JC08 test cycle)
- Hydrogen refueling time of about 3 min.
Next-generation eco-friendly cars should be used depending on its powertrain and fuel characteristics.

Hybrid technology as core technology to correspond energy saving and fuel diversification.

Electricity utilization in transportation:
- PHV is the most realistic solution to utilize electricity for normal private passenger car.
- B-EV is more suitable for specific uses such as short distance commuting and use in commercial fleets (e.g. Bus).
Toward Sustainable Mobility Society
THANK YOU