

Connected Autonomous Vehicle & Shared Mobility - A Singapore Perspective -

Dr. Benjamin Ma Automotive Summit Bangkok Jun/2019

Agenda

- History, Background and Singapore's challenges
- Singapore's Smart Nation Initiative and Urban Mobility 2040
- Connected Mobility
- Shared Mobility
- Autonomous Mobility
- Some experience sharing of my own autonomous vehicle project

- Population: 5.6 Million
- Land area: 719.9 km²

- Population ranking: 114th in the world as of 2017
- Land area ranking: 123rd in the world
- Population density: 3rd in the world

Rank Country

1 Macau

2 Monaco

3 Singapore

4 Hong Kong

5 Gaza Strip

Bangkok Metropolitan Region: 5,900 per square kilometer

- Excellent Infrastructure
- Road network expansion is limited by land area (12%)
- On the other hand, Singapore's GDP per capita grow from 29,869 USD in 2005 to 57,722 USD in 2017
- GDP doubled, how about car ownership?

Can a wealthy society also be a car-lite society?

- China GDP per capita increases more than 4 times from 2005 to 2017.
- New and better infrastructure
- Car ownership: 24/1000 people in 2005
- Car ownership: 173/1000 people in 2018
- Car ownership: increase by 7.2 times

China National Highway 110 traffic jam. The China National Highway 110 traffic jam was a recurring massive traffic jam that began to form on August 13, 2010, The traffic jam is more than 100 kilometres long and lasted for two weeks. Many drivers were able to move their vehicles only 1 km per day, and some drivers reported being stuck in the traffic jam for five days.

MOTOR VEHICLE POPULATION BY VEHICLE TYPE

End of Period (Year)		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	
1 Cars & Station-wagons		514,685	550,455	576,988	595,185	603,723	617,570	621,345	616,609	602,311	601,257	612,256	
	i) Private cars ii) Company cars iii) Tuition cars	451,745 16,954 949	476,634 18,246 976	497,116 18,874 1,011	511,125 19,733 940	520,614 20,372 919	535,233 21,403 899	540,063 21,756 897	536,882 21,860 874	519,645 21,987 841	504,160 22,382 817	502,187 24,196 843	
	 (iv) Private Hire (Self-Drive) cars (v) Private Hire (Chauffeur) cars 	11,054	12,391	12,763	13,347	13,919	14,862	15,782 614	17,238 1,609	18,884 10,485	19,374 31,962	21,180 46,903	
	vi) Off peak cars ¹	33,983	42,208	47,224	50,040	47,899	45,173	42,233	38,146	30,469	22,562	16,947	
2 TAXIS		24,446	24,300	24,702	26,073	27,051	28,210	27,695	28,736	28,259	27,534	23,140	
3 MOTORCYCLES & SCOOTERS		143,482	145,288	146,337	147,282	145,680	143,286	144,307	144,404	143,279	142,439	141,304	
4	GOODS AND OTHER VEHICLES ²	138,604	142,966	144,802	143,613	145,158	145,046	144,202	144,507	143,972	143,966	142,857	
	i) Goods-cum-passenger vehicles (GPVs) ii) Light Goods Vehicles (LGVs) iii) Heavy Goods Vehicles (HGVs) iv) Vent Heavy Coods Vehicles ((HGVs))	5,074 91,945 30,207	4,941 94,045 31,383	4,771 95,185 31,884	4,570 93,999 31,869	4,402 94,710 32,297	4,144 93,914 32,313	3,166 92,317 32,549	2,868 92,731 32,196	2,997 94,016 30,155	2,992 95,750 28,817	2,972 94,724 28,641	
5	RUSES	14 192	14 976	15,659	15,175	16 652	16 768	17.065	17 109	17 740	18 338	18 814	
	i) Omnibuses ii) School buses (CB) iii) Private buses iv) Private hire buses	3,761 1,851 2,628 3,356	3,854 1,852 2,739 3,548	4,045 1,849 2,795 3,586	3,981 1,845 2,842 3,507	4,112 1,844 3,076 3,332 4,289	4,212 1,839 2,968 3,063	4,552 1,847 2,871 2,654	4,756 1,845 2,802 2,152	5,120 1,847 2,717 1,909	5,470 1,840 2,659 1,598	5,665 1,844 2,533 1,255 7,517	
6		15,927	16,697	17,030	17,740	18,440	19,030	19,556	20.672	21,685	22,896	23.471	
	i) Cars & Station-wagons ii) Motorcycles and scooters iii) Buses iv) Goods & Other Vehicles	2,356 858 338 12,375	2,391 832 351 13,123	2,383 878 364 13,405	2,561 878 373 13,928	2,557 879 394 14,610	2,441 824 394 15,371	2,343 627 444 16,142	2,414 622 445 17,191	2,411 621 443 18,210	2,506 613 466 19,311	2,533 612 471 19,855	
7	TOTAL MOTOR VEHICLES												
Cars & Station-wagons Private Hire Cars Taxis Buses Goods & Other Vehicles		505,987 11,054 24,446 14,530 150,979	540,455 12,391 24,300 15,327 156,089	566,608 12,763 24,702 16,023 158,207	584,399 13,347 26,073 16,309 157,541	592,361 13,919 27,051 17,046 159,768	605,149 14,862 28,210 17,162 160,417	607,292 16,396 27,695 17,509 160,344	600,176 18,847 28,736 17,554 161,698	575,353 29,369 28,259 18,183 162,182	552,427 51,336 27,534 18,804 162,277	546,706 68,083 23,140 19,285 162,712	
ALL MOTOR VEHICLES (TOTAL)		144,340 851,336	146,120 894,682	147,215 925,518	148,160 945,829	146,559 956,704	144,110 969,910	144,934 974,170	145,026 972,037	143,900 957,246	143,052 955,430	141,916 961,842	

- Excellent Infrastructure
- Road network expansion is limited by land area (12%)
- On the other hand, Singapore's GDP per capita grow from 29,869 USD in 2005 to 57,722 USD in 2017
- GDP doubled, how about car ownership?

How did we control the number of cars?

Moving forward...

- COE itself cannot solve our problem !
- Zero growth policy for motor vehicle in Singapore for now
- Likely negative growth in the future
- LTA (Land Transport Authority) publishes Future Mobility Plan 2040:
- 1. 8 in 10 households living within 10 minutes' walk of a train station
- 2. 85% of public transport journeys under 20km completed within 60 minutes
- 3. <u>75% of all journeys during peak hours undertaken on public transport</u>
- Singapore's vision: to become a car-Lite society
- Our challenge: how do we meet the increasing demand in personal mobility with our limited road infrastructure?

Smart Nation: Smart Urban Mobility Initiative

 Strategic National Projects that drive pervasive adoption of digital and smart technologies throughout Singapore, including healthcare, living, mobility and service.

UPDATED MILESTONES FOR STRATEGIC NATIONAL PROJECTS

Smart Nation: Smart Urban Mobility Initiative

- Autonomous vehicle technology is the key enabler to realize "Smart Urban Mobility"
- Smart Urban Mobility is not just about autonomous vehicle.
- Connectivity, shared, assistive and green

Vehicle-to-everything (V2X) Communications: Passing of information from a vehicle to any entity that

may affect the vehicle, and vice versa.

- ✓ V2V (Vehicle-to-Vehicle)
- ✓ V2P (Vehicle-to-Pedestrian)
- ✓ V2D (Vehicle-to-Device)
- ✓ V2H (Vehicle-to-Home)
- ✓ V2G (Vehicle-to-Grid)
- ✓ V2I (Vehicle-to-Infrastructure
- ✓ Etc...

Why do we need V2X?

- ✤ Improve the safety
 - ✓ Reduce vehicle collisions and crashes
 - ✓ Traffic hazard warnings
- Increase the traffic efficiency
 - ✓ Regulatory/contextual speed limits
 - ✓ Traffic light optimal speed advisory
 - Traffic information and recommended itinerary
 - ✓ Enhanced route guidance and navigation

✤ Others

- ✓ Point of interest notification
- ✓ Automatic access control/parking access
- ✓ Local electronic commerce
- ✓ Car rental/sharing assignment/reporting
- ✓ Map download and update
- ✓ Instant messaging

Left turn driver assistant

Emergency electronic break light system

V2X allows road safety, efficiency applications such as (non-exhaustive list):

- Forward collision warning
- Lane change warning/blind spot warning
- Emergency Electric Brake Light Warning
- Intersection Movement Assist
- Emergency Vehicle Approaching
- Road Works Warning
- Platooning: Grouping vehicles into platoons is a method of increasing the capacity of roads.

The basic main components of VANET (Vehicle Ad-hoc Network)

- On Board Unit (OBU) Communication units mounted on vehicles.
- Road Side Unit (RSU) Communication units located on the roadsides
- Application Unit (AU)
 The application reside in vehicles.

Challenges (uncertainty):

- 1. Infrastructure Cost: RSU (Road Side Unit)
- 2. Vehicle cost: OBU (On-board Unit)
- 3. Use cases and applications can be realized using alternative technologies:
 - Forward collision warning: radar-based ADAS
 - Road and traffic conditions: apps
 - Traffic light, speed camera: apps
 - Traffic monitoring: satellite-based, camera-network, highway induction loop detector, etc.
- 4. Standard US: WAVE ("Wireless Access for Vehicular Environments") Europe: ETSI ITS-G5
- 5. VANET vs. 5G

Connected Mobility: VANET vs. 5G

Shared Mobility

Shared mobility refers to the shared used of a vehicle, bicycle, or other transportation mode

It is a transportation strategy that allows users to access transportation services on an as-needed basis.

Shared Mobility

Impacts of shared mobility:

- Enhanced transportation accessibility as well as reduced driving and decreased personal vehicle ownership.
- Environmental, social, and transportation system benefits
- Expand the reach of public transportation by addressing gaps in existing public transportation systems.
- Cost savings

Shared Mobility Service Models

Shared Mobility: E-hailing

Ride-hailing (E-hailing) is a process of ordering a car, taxi, limousine, or any other form of transportation pick up via a computer or mobile device. The E stands for electronic and hail refers to the traditional process of signalling an approaching taxi/cab to stop.

Shared Mobility: rental car

BlueSG

Shared Mobility: rental car

Autonomous Mobility Initiative

Self-Driving Vehicles (SDVs): Future of Mobility in Singapore

Find out how self driving vehicle technology can support mobility on demand and provide efficient transportation in the face of existential constraints. Spearheading Research in Standards for Self-Driving Vehicles (SDVs)

Singapore will spearhead research in standards for self-driving vehicles (SDVs) and provide an environment to test them before introducing to public roads.

Autonomous Vehicle in Singapore

Institute for Infocomm Research

Singapore Autonomous Vehicle Initiative (SAVI)

Joint partnership between LTA, JTC and A*STAR to provide a technical platform for industry partners and stakeholders to conduct research and development (R&D) and test-bedding of AV technology, applications and solutions.

National University of Singapore

- The 1st AV program in Singapore.
- Joint collaboration between NUS and MIT (Singapore-MIT Alliance)
- Started with golf buggy and deployed at Chinese Garden
- ROS-based

NUS: autonomous golf buggy

NUS: Nissan Autonomous Vehicle

Nanyang Technological University

- Started with electric vehicle research by ERI@N (Energy Research Institute)
- Many intelligent transportation testbeds & initiatives
- 1. CETRAN (Centre of Excellence for Testing & Research of AVs)
- 2. Autonomous guided shuttle

Centre of Excellence for Testing & Research of AVs

1. CETRAN

- World's biggest test track for AVs, dedicated to supporting the Singapore's efforts in the introduction of these vehicles on public roads.
- Furthermore, ERI@N (CETRAN's host institute) has partnered with LTA to develop an electromobility roadmap for Singapore in 2015. ERI@N is also involved in the R&D process of Singapore's first large-scale electric-vehicle (EV) sharing programme by Blue SG, and is responsible for designing and testing high power (150kW) charging of their vehicles.

Centre of Excellence for Testing & Research of AVs

1. CETRAN AV testbed: 1.8-ha CETRAN Test Circuit provides a simulated road environment for the testing of AVs prior to their deployment on public roads, and it complements the AV testbed in <u>one-north</u>.

(6) Signalled intersection Urban canyon Bus stop with bay (9) V2X communication Pedestrian crossing 2 Rain simulator (11) Crank course Charging station for vehicle and (3) Slope AutOnomous VehicLe (12) Bus stop (4) Signalled intersection MonItoring and EValuation Flash flood area SystEm (OLIVE) 5 S-course

CETRAN AV Testbed

Autonomous Guided Shuttle

- 1. Group Rapid Transit autonomous vehicles (Dutch autonomous vehicle technology company 2getthere)
- 2. Campus Shuttle

Institute of Infocomm Research (I2R) Agency of Science, Technology And Research (A*STAR)

- A*STAR is Singapore's national research institute, I2R covers many areas including wireless, robotics, AI and machine learning, network, information security, etc.
- I2R started AV program by its robotics department in 2014
- Many spin-offs later on.

Industry players: Start-ups, MNCs and GLCs

- Start-ups
- Government Linked Company
- Multinational company

*AV trial participants will be required to undergo further demonstration and qualification tests before conducting trials in mixed-use, residential estates in Dover and Buona Vista.

MIT Autonomous Vehicle Spin-off

- nuTonomy, founded in 2013. based in Boston, Zurich and Singapore
- Launched a pilot robo-taxi service in Singapore
- Acquired by Delphi for 450 M\$ in 2017

A*STAR Autonomous Vehicle Spin-off

- Moovita: inherited most of the technologies/capabilities from A*STAR AV team. Working on general purpose AV, AI, first/last-mile AV
- SingPilot: by-wire conversion/retrofitting of AV
- IIM (International Intelligent Machine), headquarter in ShenZhen, China, R&D office in Singapore: AI and robotics
- Red Dot Robotics: autonomous utility/service vehicle

A*STAR Autonomous Vehicle Spin-off

ST (Singapore Technology) Engineering

1. Autonomous bus: ERI@N in partnership with LTA (Lad Transport Authority) will test and develop their self-driving vehicle technology with two electric hybrid buses.

ST (Singapore Technology) Engineering

ST-Kinetics (Singapore Technology Kinetics)

- Singapore Technology is one of the biggest engineering company in Singapore. ST groups consists of ST Electronics, Marine, Aerospace and Kinetics.
- Deployed mini AV shuttle at Garden by the Bay.
- Trial of ST AutoBus in Sentosa Island

My Experience in Autonomous Vehicle

- Started an R&D program in 2014
- Focus on first/last-mile vehicle, campus shuttle, community transport, etc.
- Major achievements: autonomous campus navigation, auto-parking, etc.
- Successful translation of IP to commercial product
- Local and international events and activities

Hardware Architecture: vehicle platform

- Toyota COMS Electric Vehicle
- Modified for drive-by-wire/steerby-wire

Capacity	1	Maximum speed	60 km/h
Loading weight	100 kg	Maximum torque	250 Nm
Dimension	2.4(H)x1.1(W)x 1.5(L) m	Battery	Lead-acid or lithium-ion
Weight of vehicle	410 kg	Charging mileage	50 km
Drive system	Rear-wheel drive	Charging time	6 hours
Output power	5 kw	Communic ation	CAN

Hardware Architecture: Sensors

System Integration

System Integration: 6 months

Some experience sharing:

- Computing power
- Battery capacity
- Power management
- Automotive inspection

Software

- Inter-process communication (IPC) framework
- SLAM: Simultaneous Localization And Mapping for vehicle localization
- Control: throttle, brake and steering control
- Navigation and Path Planning: driving and parking scenarios
- Perception: Deep learning

Software: Inter-process communication framework

- Autonomous vehicle has many software components.
- Failure of one software component should not result in catastrophic system failure.
- Inter-process communication framework allows processes (software components) to synchronize, manage shared data, exchange information, etc.

Robot Operating System

- Message passing interface (IPC) middleware
- Remote procedure calls
- Distributed systems
- Robot-specific features/libraries
- Debugging tools

Software: SLAM

- Challenges:
 - 1. High-resolution, large-scale map's memory footprint is large. Construction of map is slow. Loading regional map data to a vehicle is slow.
 - 2. Long-term map maintenance. (removing temporal objects)
 - 3. Tedious data collection process.

Orbital view of part of 3D Map

Software: Vehicle Control

- Vehicle Control: throttle, brake and steering control (Velocity and steering control)
- Throttle and brake (velocity control):
- 1. First attempt: implemented PID controller in C++ and tune parameters on the real car. It works (up to 15 km/hr)!
- 2. Cons: difficult to compare with other types of controller such as LQR, MPC, etc.
- 3. Cons: difficult to reproduce on other types of vehicle.
- 4. Current approach: modelling, identification, simulation and deployment.

Software: Vehicle Control

- MATLAB model
- Design controller in MATLAB
- Tune gains in MATLAB
- Compile into ROScompatible C code
- Seamless transition from Design to Deployment

Background: Simulator

- Vehicle Simulator
- ROS
- VREP
- Physics engine
- Standard control algorithm interface
- Gazebo (currently used)

Demonstration

- 3D mapping and localization
- Planning
- Perception
- Vehicle control
- Sensor fusion
- Campus navigation

Simulation result:

Simulation of three auto-parking scenarios

Software: Deep learning based Perception

- Detection/recognition of road users: car, bike, pedestrian, traffic police, etc.
- Detection/recognition of traffic signs.
- Situation awareness: sensor-fusion or Al-based?
- Decision making: rulebased or AI-based?

Deep learning model: VGG 16 Detector: SSD Data set: Pascal VOC 2012

Autonomous driving: Logic vs Al?

- Detection/recognition of road users: car, bike, pedestrian, traffic police, etc.
- Detection/recognition of traffic signs.
- Situation awareness: sensor-fusion or Al-based?
- Decision making: rule-based or Albased?

Al-based autonomous driving Sensor used: camera Deep learning model: ResNet-50 Dataset: human driving inputs and image recording of lanes

Thank you.