Connected Autonomous Public Personal Mobility is required on future mobility society!

Professor Tetsunori HARAGUCHI

College of Industrial Technology, Nihon University Institutes of Innovation for Future Society, Nagoya University

Automotive Summit 2019, BITEC, Bangkok, on June 20, 2019

Self introduction

– Career –

• April 1978

Toyota Motor Corporation

- April 1983 March 1986 Toyota Europe Representative Office ; Brussels
- January 1999

• July 2011

- 99 General manager Professor; Nagoya University
- April 2019 Senior Researcher; Nihon University

– Major experiences in Toyota –

- 1980~1999 Vehicle Dynamics; Driving and Comfort Performance
 - Corolla, Celica, Supra, Cressida, Lexus, Land Cruiser, etc.
- 1986~2002 Research and Development of Vehicle Dynamics, New Suspension system
- 2003~2011 Future Mobility and Advanced Technology
- 2008~2011 Head of "Ultra Low Fuel Consumption Vehicle Project"

– Awards –

- 1996 FISITA (International Society of Automotive Engineers)
 - Outstanding Paper Award

"Analysis of the Braking Performance of Straight-Running Vehicles on Uneven Roads"

- Invited Lectures -

- 2005 IRC (International Rubber Conference) Keynote lecture
- 2010 IISRP (International Society of Rubber Industries) Invited lecture

Automotive Summit 2019, BITEC, Bangkok, on June. 26, 2019

Self Introduction

Start as a Vehicle Dynamicist (39 years ago)

⇒ AE86"Hachiroku" was the final FR Corolla GT and had become a "Legendary" vehicle.

Self Introduction

Most Aggressive Age (30 years ago)

MotorFan

 \Rightarrow "Top Guns" were three test drivers specially designated in Toyota.

Self Introduction

Ultra efficient concept vehicle ~FT-Bh ~

B	Fuel Con	sumption is F	Half of Priu	IS2003
TOYOTA		Contribution to fuel co	nsumption on NEDC (New	European Drivin
		Base case	Studied case	Fuel consur
C	urb mass	1200 kg	800 kg	

Toyota FT-Bh Geneva Motor Show 2012

	•		
Contribution to fuel consumption on NEDC (New European Driving Cycle)			
Base case	Studied case	Fuel consumption	
1200 kg	800 kg		
1350 kg	🔶 950 kg	-14.6%	
100×10-4	→ 60×10 ⁻⁴	-10.6%	
3785 mm	3785 mm		
1695 mm	1695 mm		
1520 mm	1435 mm		
0.22 m ²	0.20 m ²	-2.7%	
0.26	0.23	-2.7%	
1496 cc	996 cc		
THS II	THS II		
37.5%	45%	-18.9%	
FF	FF		
	Base case 1200 kg 1350 kg 100 × 10 ⁻⁴ 3785 mm 1695 mm 1520 mm 0.22 m ² 0.26 1496 cc THS II 37.5%	Base case Studied case 1200 kg 800 kg 1350 kg 950 kg 100 \times 10 ⁻⁴ 60 \times 10 ⁻⁴ 3785 mm 3785 mm 1695 mm 1695 mm 1520 mm 1435 mm 0.22 m ² 0.20 m ² 0.26 0.23 1496 cc 996 cc THS II THS II 37.5% 45%	

Base case is a current mass-produced compact car in B segments plus hybrid power train system hypothetically.

Toyota FT-Bh Geneva Motor Show 2012

\Rightarrow FT-Bh emits only 49gr/km CO2.

Today's Topics

- Background
 - Decreasing birthrate and Aging population
 - Requirement on 21st Century Mobility
- Approaching to the true cause by "Why, Why, Why..."
 - Is mass transportation really high efficiency?
 - Is ride *sharing* really the needs of users?
- Innovation
 - Innovative Mobility Society requires **Driverless** Transportation.
 - Innovative Mobility Society requires **Behavioral Predictions**.
 - Anytime, from Anywhere, to Anywhere
- Personal Mobility Vehicles; Public Personal and Use for Free

Background

Decreasing birthrate and Aging population

 \Rightarrow Required labors age to maintain the macro-economy should be shift to older.

Decreasing birthrate and Aging population

- Decreasing birthrate and aging population
- Required labors age to maintain the macro-economy should be shift to older.
- Future society requires support by innovative mobility system, for young generation to continue to be students.
- Future society requires support by innovative mobility system, for elderly generation to continue on active duty.
- This could not be originally a social problem from the viewpoint of age distribution.

 \Rightarrow Required labors age to maintain the macro-economy should be shift to older.

Background

Requirement on 21st Century Mobility

- Restriction on private ownership?
- Ultra Small Electric Vehicle !

Negative prospect on resource supply

- Metals (steel, etc.)
- Chemical materials
- Natural rubber

Negative prospect on infrastructure

- Road
- Parking
- Energy supply

Typical usage

in residential district

- Everyday
- Short distance

Requirement on 21st Century Mobility

- **Resource crisis and difficulty on infrastructure**
- Ultra smaller mobility should be comfortable for citizens and smart solution for government official.
- Future society requires that mobility system is innovatively and drastically efficient.
- Future society requires that upcoming mobility is innovative and desired by widely citizens.

Developed country shows sustainable mobility society with required future mobility.

 \Rightarrow "Ultra small" is the necessary trend on rapid increase of global automobile number in use.

"Public personal ultra-small mobility" was proposed toward upcoming future.

Is mass transportation really high efficiency?

AirPlane (B787-8) / TRain (N700) / Passenger Car (Crown Comfort) / Personal Mobility Vehicle

 \Rightarrow Although mass transportation makes efficiency better on driver, it makes efficiency worth on Energy.

"Public personal ultra-small mobility" was proposed toward upcoming future.

Is ride sharing really the needs of users?

 \Rightarrow Secure privacy, then anytime, from anywhere, to anywhere ...

Society requires Driverless Transportation

Benefits and Fun, citizen cannot release

- Type I : Ultra small full autonomous driving mobility → Social infrastructure, free to use
 - \rightarrow Anytime, from anywhere, to anywhere
 - \rightarrow Secure privacy
- Type II : Sense of unity like a part of the body
 - ightarrow Narrow width, Tilting inward on turning
 - \rightarrow Designated driving lane (Free from congestion)
 - → Designated parking lots, Road side parking allowed (Easy Parking)

Toyota Motor Corporation

\Rightarrow Popularization is essential as environmental solution.

Explosive popularization of efficient mobilities is the key solution on Global warming.

 \Rightarrow Upcoming future; Cubic mobility comes without calling, starts without ordering.

Society requires Behavioral Predictions

- Full Autonomous is the core solution not only on driver point of view but also on privacy point of view.
- Connected is the core solution on customers satisfactions and explosive popularization.

 \Rightarrow Connected, Autonomous, Shared & Services, Electric

Anytime, from Anywhere, to Anywhere

- "Free" last one mile mobilities as the infrastructure
- 10 times higher frequency in use than private cars
- Ultra small vehicles with "level 5" autonomous driving in limited area and on limited traffic condition

- Social infrastructure
- Free to use
- Full autonomous

 \Rightarrow Annual budget is JPY 2 trillion to deliver 5 million Cubics to replace 50 million private cars.

New mobility culture creates lively society

Benefits and Fun, citizen cannot release

Type I : Ultra small full autonomous driving mobility
→ Social infrastructure, free to use
→ Anytime, from anywhere, to anywhere

 \rightarrow Secure privacy

Type II : Sense of unity like a part of the body

- \rightarrow Narrow width, Tilting inward on turning
- \rightarrow Designated driving lane (Free from congestion)
- \rightarrow Designated parking lots, Road side parking allowed

Special service, Desire to own, Fun to drive

Toyota Motor Corporation

 \Rightarrow New mobilities, citizen cannot release, make explosive popularization.

PMV; Public Personal and Use for Free

Free Road Free Mobility Free Information Free Network

⇒ Society guarantees the right to move basically and the right to access basic information