Workforce in Robotics and Automation in Manufacturing Industry

Collaboration between Industry and Education Sectors

Supachai Vongbunyong, PhD Assistant Director of Research and International Affairs

Institute of Field Robotics (FIBO) King Mongkut's University of Technology Thonburi

Co-Founder of Innovation and Advanced Manufacturing Research Group

- 1. Introduction to Robotics and Automation
- 2. From manual to automatic
- 3. Human Resource Development
- 4. Collaboration Strategy
- 5. Case-study

Robotics & Automation (RA) Industry Thailand

Thailand 4.0 - Value-based Economy

From Manufacturing To Value added with advanced manufacturing

- RA plays and important role in productivity improvement of manufacturing industries and service business of Thailand
- RA is an Engine of Growth of Thailand economics by using knowledge & new technology
- Significant growth in global market of robots (increase 40% per year and expected to reach 61.4 million units sales in 2020)
- Thailand aim for:

Are we ready !?

- Be users
- Be developers
- Be manufacturers

1. Automation and Robotics in Thailand

Robotics Cluster – Thailand's Vision & Goal

Automation at least 30% of import value

Robotics Cluster – Development strategy

Outcome

- Industry in Thailand increase productivity
- Local robot manufactuters are able to be a technology owners and brand owners
- Local investment resulting in business expansion

3) Technology Capability Enhancement Center of Excellence (COE)

Technology transfer mechanism 1. Certify technology 2. HR Development 3. Consultant/ Technology Transfer 4 Industrial prototype

Levels of Automation

Identify the level of automation in your manufacturing system

Levels of Automation - Phases

Ref - http://electrical-engineering-portal.com/automation-migration-strategy-in-3-phases

Status of Manufacturing Industry in Thailand

Marginal usage of robotics and automation in manufacturing industry in Thailand. There is a high opportunity (85%) to transform.

Status of Manufacturing Industry in Thailand

50% of industry in Thailand is ready to adapt their manufacturing process to use robotics/automation within 1-3 years

- Majority of Large companies are ready to change in 1-3 years.
- Majority of Medium companies are ready to change in 3-5 years.
- Majority of **Small** companies are ready to change in later than 5 years.

Migration - Steps & Key Factors

- 1. Identify your current position & Needs
- 2. Optimize process Operation Research
- 3. Identify the opportunity for automation
- 4. Feasibility study
- 5. Investment & Implementation

Migration Key Factors (1) Investment

- Return of Investment
- Technology & Economic Feasibility
- Government Programs
 - Tax incentive on R&D & process improvement
 - Tax exempt on import export
 - Super Clusters in Robots and Automation

Migration Key Factors (2) Tech Resources

- Automation suppliers
 - Equipment and parts
 - Technology availability and feasibility
- Source of knowledge & consultant
 - Academic institutes
 - System Integrators
 - Makers & Vendors
- Research & Development
 - Internal & External

Migration Key Factors (3) People

- Vision of the executive
- Resolve workers problems
 - Skilled workers
 - Health and safety
- Prepare people in RA
 - Operate
 - Maintenance
 - Develop

Are We Ready !?

Skills in Robotics and Automation

Mechanics/Manipulation	Electrical and Electronics/ Perception	Computer/Cognition	Technoprenuership
Mechanism Design	PLC (Siemens, ABB, Mitsubishi, Omron)	C/C++/.NET Programming	Business Foundation
SolidWorks/AutoCAD/ Drawing	Circuit Design	Robot Vision/ Image Processing	Factory Operation
Automatic Control	Pneumatics Circuit	Industrial Robot/Conveyor Operation	Technology Company Startup
CNC	Microcontroller	NI/LABView	
	Sensors	Factory Simulation/ARENA	
	Actuators	Intelligent Systems	

Skills Demand in Each Industry

Survey on 35 companies in 4 main industries:

(1) Automotive (2) Food Agriculture (3) Medical & healthcare (4) Electronics

3. Human Resource Development

Migration Key Factors (3) People

BioMedical Robotics

"Tell me and I forget, teach me and I may remember, involve me and I learn."

- Benjamin Franklin

Organization at FIBO

Model – Project-based Collaboration

Students

Case study – Academics & Industry

- 1. Co-op Industry
- 2. Co-op Research
- 3. Industrial Services
- 4. Tech start-up
- 5. Contest

Case1 – Co-Op Research Collaboration Robot for Automatic Valve Trimming System

Partners

Industry - ATACO

Co-op Program

- 1 Academic as a principle investigator
- 1 Master student as a tech consultant
- 3 Bachelor student as a researchers
- 1 Engineers (from Sanwa)
- 6 months

Funding Matching

- ATACO (salary + Equipment)
- **TSI** (Talent Mobility)

Expected publications: 1 BE Thesis, 1-2 conference

Project Roles

- ATACO
 - Real industrial problem in trimming process
 - Provide technical supports for industrial practices
 - Provide access to the working site
 - Support tools and equipment
- **FIBO**
 - Project manager / Consultant / Researcher

Case2 – Co-Op Research Collaboration System of VR/AR product assembly training

Partners

- University UTAS
- Industry ATACO Asahi Thai Alloy Co. Ltd.

Co-op Program

- 1 Academic as a principle investigator
- 1 student as a researcher
- 6 months (4 at Sanwa + 2 at UTAS)

Funding Matching

- FIBO Research (stipend)
- UTAS (stipend)
- Sanwa (salary + Equipment)

Expected publications:

1 BE Thesis, 1 Journal, and 1-2 conference

Project Roles

- ATACO
 - Real industrial problem in virtual training
 - Provide technical supports for industrial knowledge and practices
- University of Tasmania
 - Consultant technology in VR/AR consultant
- FIBO
 - Consultant/ Supervise in Robotics
 - Researcher

Case3 – Industrial Services Automatic Water Bottles Loading

Partners

Industry – Bayak Co. Ltd.

Industrial Service Team

- 1 Academic as a principle investigator
- 1 FIBO Engineer as a researcher
- 1 Bachelor student as a researcher
- ABB Engineers Team
- 6 months

Funding Matching

- Bayak (Expense + Equipment)
- NSTDA (ITAP)

Project Roles

- Bayak
 - Real industrial problem in water packaging
 - Provide access to the working site
 - Support tools and equipment
- FIBO
 - Project manager / Consultant / Researcher

Case4 – Tech Start-Up Automatic Medicine Dispensary System

Outcomes

- 3-4 Commercial prototypes
- 1-2 Start-Up companies
- MOU: FIBO Supreme Siriraj TCELS

FIBO Roles

- Academics (technical consultant)
- TEP Students (Start-Up company)
- FRA Students (R&D engineers)
- Create ecology

Case5 – Industrial-based Contest Delta Cup – Advanced Automation Contest

Outcomes

- 5 Teams from Thailand's universities (2017)
- Concept prototypes
- Students develop skills with industrial practice

Delta Support

- Industrial Automation equipment
- Travel and exhibition expense
- Technical support of IA

Universities support

- Academics as a supervisor
- Workplace and facility

What Should We Do?

Industry

- Talk to Universities
- Tell them what you need in tech & human resources

Education

- Adapt courses & activities to serve the industrial requirements
- Research that serve industrial needs

Together

- Research project and training collaboration
- Coaching via WIL / Co-op / Internship / Start-Up

THANK YOU

Supachai Vongbunyong, PhD

Innovation and Advanced Manufacturing (I AM) Research Group <u>http://www.fibo.kmutt.ac.th/iam</u> Institute of Field Robotics (FIBO)King Mongkut's University of Technology Thonburi (KMUTT) <u>Supachai.von@kmutt.ac.th</u>